Temario del curso
Introducción a la aplicación Machine Learning
- Aprendizaje estadístico vs. aprendizaje automático
- Iteración y evaluación
- Compensación entre sesgo y varianza
Machine Learning con Python
- Elección de bibliotecas
- Herramientas complementarias
Regresión
- Regresión lineal
- Generalizaciones y no linealidad
- Ejercicios
Clasificación
- Repaso bayesiano
- Bayes ingenuo
- Regresión logística
- K-Vecinos más cercanos
- Ejercicios
Validación cruzada y remuestreo
- Enfoques de validación cruzada
- Bootstrap
- Ejercicios
Unsupervised Learning
- Agrupamiento de K-medias
- Ejemplos
- Desafíos del aprendizaje no supervisado y más allá de K-means
Requerimientos
Conocimiento del lenguaje de programación Python. Se recomienda una familiaridad básica con la estadística y el álgebra lineal.
Testimonios (5)
The trainer showed that he has a good understanding of the subject.
Marino - EQUS - The University of Queensland
Curso - Machine Learning with Python – 2 Days
It was a great intro to ML!! I liked the whole thing, really. The organization was perfect. The right amount of time for lectures/ demos and just us playing around. Lots of topics were touched, just at the right level. He was also very good at keeping us super engaged, even without any camera being on.
Zsolt - EQUS - The University of Queensland
Curso - Machine Learning with Python – 2 Days
Clarity of explanation and knowledgeable response to questions.
Harish - EQUS - The University of Queensland
Curso - Machine Learning with Python – 2 Days
The knowledge of the trainer was very high and the material was well prepared and organised.
Otilia - TCMT
Curso - Machine Learning with Python – 2 Days
I thought the trainer was very knowledgeable and answered questions with confidence to clarify understanding.