Gracias por enviar su consulta! Uno de los miembros de nuestro equipo se pondrá en contacto con usted en breve.
Gracias por enviar su reserva! Uno de los miembros de nuestro equipo se pondrá en contacto con usted en breve.
Programa del Curso
Introduction to LangGraph and Graph Concepts
- Why graphs for LLM apps: orchestration vs. simple chains
- Nodes, edges, and state in LangGraph
- Hello LangGraph: first runnable graph
State Management and Prompt Chaining
- Designing prompts as graph nodes
- Passing state between nodes and handling outputs
- Memory patterns: short-term vs. persisted context
Branching, Control Flow, and Error Handling
- Conditional routing and multi-path workflows
- Retries, timeouts, and fallback strategies
- Idempotency and safe re-runs
Tools and External Integrations
- Function/tool calling from graph nodes
- Calling REST APIs and services within the graph
- Working with structured outputs
Retrieval-Augmented Workflows
- Document ingestion and chunking basics
- Embeddings and vector stores (e.g., ChromaDB)
- Grounded answering with citations
Testing, Debugging, and Evaluation
- Unit-style tests for nodes and paths
- Tracing and observability
- Quality checks: factuality, safety, and determinism
Packaging and Deployment Fundamentals
- Environment setup and dependency management
- Serving graphs behind APIs
- Versioning workflows and rolling updates
Summary and Next Steps
Requerimientos
- An understanding of basic Python programming
- Experience with REST APIs or CLI tools
- Familiarity with LLM concepts and prompt engineering fundamentals
Audience
- Developers and software engineers new to graph-based LLM orchestration
- Prompt engineers and AI newcomers building multi-step LLM apps
- Data practitioners exploring workflow automation with LLMs
14 Horas