Cursos de Aprendizaje profundo

Cursos de Aprendizaje profundo

Los cursos de formación en vivo (DL) de aprendizaje profundo dirigidos por un instructor demuestran a través de la práctica los fundamentos y aplicaciones del aprendizaje profundo y cubren temas como el aprendizaje profundo de máquinas, el aprendizaje estructurado profundo y el aprendizaje jerárquico.

El entrenamiento de aprendizaje profundo está disponible como "entrenamiento en vivo en el sitio" o "entrenamiento en vivo remoto". El entrenamiento en vivo se puede realizar localmente en las instalaciones del cliente en Ecuador o en los centros de entrenamiento corporativos de NobleProg en Ecuador. El entrenamiento remoto en vivo se lleva a cabo por medio de un escritorio remoto interactivo.

NobleProg--su proveedor de capacitación local

Machine Translated

Testimonios

★★★★★
★★★★★

Algunos de nuestros clientes

Programas de los cursos DL (Deep Learning)

Nombre del Curso
Duración
Descripción General
Nombre del Curso
Duración
Descripción General
21 horas
Descripción General
Artificial Neural Network es un modelo de datos computacional usado en el desarrollo de sistemas de Artificial Intelligence (AI) capaces de realizar tareas "inteligentes". Neural Networks se usan comúnmente en aplicaciones de Machine Learning (ML), que son en sí mismas una implementación de AI. Deep Learning es un subconjunto de ML.
21 horas
Descripción General
keras es una API de redes neuronales de alto nivel para el desarrollo rápido y la experimentación. Se ejecuta en la parte superior de TensorFlow, CNTK, o Theano.

esta formación presencial dirigida por un instructor (in situ o a distancia) está dirigida a personas técnicas que deseen aplicar un modelo de aprendizaje profundo a las aplicaciones de reconocimiento de imágenes.

al final de esta formación, los participantes podrán:

- instalar y configurar keras.
- rápidamente prototipo de modelos de aprendizaje profundo.
- implementar una red convolucional.
- implementar una red recurrente.
- ejecutar un modelo de aprendizaje profundo en una CPU y GPU.

formato de la del curso

Conferencia y discusión - Interactive.
- un montón de ejercicios y práctica.
- implementación práctica en un entorno de laboratorio en vivo.

Opciones de personalización del curso

- para solicitar una formación personalizada para este curso, póngase en contacto con nosotros para concertar.
- para aprender más sobre keras, por favor visite: https://keras.io/
28 horas
Descripción General
Deep Learning para NLP permite que una máquina aprenda procesamiento de lenguaje simple a complejo. Entre las tareas actualmente posibles se encuentran la traducción de idiomas y la generación de subtítulos para fotos. DL (Deep Learning) es un subconjunto de ML (Machine Learning). Python es un lenguaje de programación popular que contiene bibliotecas para Deep Learning para NLP.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar las bibliotecas de Python para el procesamiento de lenguaje natural (NLP) mientras crean una aplicación que procesa un conjunto de imágenes y genera leyendas.

Al final de esta capacitación, los participantes podrán:

- Diseño y código DL para NLP utilizando bibliotecas Python
- Crear código de Python que lea una gran colección de imágenes y genere palabras clave
- Crear código Python que genere subtítulos de las palabras clave detectadas

Audiencia

- Programadores con interés en la lingüística
- Programadores que buscan una comprensión de NLP (procesamiento de lenguaje natural)

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
28 horas
Descripción General
El aprendizaje automático es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin estar programadas explícitamente. El aprendizaje profundo es un subcampo del aprendizaje automático que utiliza métodos basados ​​en el aprendizaje de representaciones de datos y estructuras tales como redes neuronales. R es un lenguaje de programación popular en la industria financiera. Se utiliza en aplicaciones financieras que van desde los principales programas comerciales hasta los sistemas de gestión de riesgos.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo implementar modelos de aprendizaje profundo para finanzas usando R a medida que avanzan en la creación de un modelo de predicción del precio de las acciones de aprendizaje profundo.

Al final de esta capacitación, los participantes podrán:

- Comprender los conceptos fundamentales del aprendizaje profundo
- Aprende las aplicaciones y usos del aprendizaje profundo en finanzas
- Use R para crear modelos de aprendizaje profundo para finanzas
- Construya su propio modelo de predicción del precio de las acciones de aprendizaje profundo utilizando R

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
28 horas
Descripción General
El aprendizaje automático es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin estar programadas explícitamente. El aprendizaje profundo es un subcampo del aprendizaje automático que utiliza métodos basados ​​en el aprendizaje de representaciones de datos y estructuras tales como redes neuronales. Python es un lenguaje de programación de alto nivel famoso por su clara sintaxis y legibilidad de código.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo implementar modelos de aprendizaje profundo para la banca usando Python mientras avanzan en la creación de un modelo de riesgo de crédito de aprendizaje profundo.

Al final de esta capacitación, los participantes podrán:

- Comprender los conceptos fundamentales del aprendizaje profundo
- Aprende las aplicaciones y usos del aprendizaje profundo en la banca
- Utilice Python, Keras y TensorFlow para crear modelos de aprendizaje profundo para la banca
- Construya su propio modelo de riesgo de crédito de aprendizaje profundo usando Python

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
28 horas
Descripción General
El aprendizaje automático es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin estar programadas explícitamente. El aprendizaje profundo es un subcampo del aprendizaje automático que utiliza métodos basados ​​en el aprendizaje de representaciones de datos y estructuras tales como redes neuronales. R es un lenguaje de programación popular en la industria financiera. Se utiliza en aplicaciones financieras que van desde los principales programas comerciales hasta los sistemas de gestión de riesgos.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo implementar modelos de aprendizaje profundo para la banca usando R a medida que avanzan en la creación de un modelo de riesgo de crédito de aprendizaje profundo.

Al final de esta capacitación, los participantes podrán:

- Comprender los conceptos fundamentales del aprendizaje profundo
- Aprende las aplicaciones y usos del aprendizaje profundo en la banca
- Use R para crear modelos de aprendizaje profundo para la banca
- Construya su propio modelo de riesgo de crédito de aprendizaje profundo usando R

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
28 horas
Descripción General
El aprendizaje automático es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin estar programadas explícitamente. El aprendizaje profundo es un subcampo del aprendizaje automático que utiliza métodos basados ​​en el aprendizaje de representaciones de datos y estructuras tales como redes neuronales. Python es un lenguaje de programación de alto nivel famoso por su clara sintaxis y legibilidad de código.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo implementar modelos de aprendizaje profundo para las finanzas usando Python mientras avanzan en la creación de un modelo de predicción del precio de las acciones de aprendizaje profundo.

Al final de esta capacitación, los participantes podrán:

- Comprender los conceptos fundamentales del aprendizaje profundo
- Aprende las aplicaciones y usos del aprendizaje profundo en finanzas
- Utilice Python, Keras y TensorFlow para crear modelos de aprendizaje profundo para finanzas
- Construya su propio modelo de predicción del precio de las acciones de aprendizaje profundo usando Python

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
21 horas
Descripción General
El aprendizaje de refuerzo profundo se refiere a la capacidad de un "agente artificial" para aprender por prueba y error y recompensas y castigos. Un agente artificial tiene como objetivo emular la capacidad de un ser humano de obtener y construir conocimiento por sí mismo, directamente a partir de insumos crudos como la visión. Para lograr un aprendizaje reforzado, se utilizan redes neuronales y de aprendizaje profundo. El aprendizaje de refuerzo es diferente del aprendizaje automático y no depende de enfoques de aprendizaje supervisados ​​y no supervisados.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán los fundamentos de Deep Refforcement Learning a medida que avanzan en la creación de un Deep Learning Agent.

Al final de esta capacitación, los participantes podrán:

- Comprender los conceptos clave detrás del aprendizaje profundo y el aprendizaje del aprendizaje automático
- Aplicar algoritmos avanzados de refuerzo de aprendizaje para resolver problemas del mundo real
- Crear un agente de aprendizaje profundo

Audiencia

- Desarrolladores
- Científicos de datos

Formato de la carrera

- Parte de lectura, parte de discusión, ejercicios y práctica práctica
21 horas
Descripción General
Introducción:

El aprendizaje profundo se está convirtiendo en un componente principal del diseño de productos futuros que quiere incorporar inteligencia artificial en el corazón de sus modelos. Dentro de los próximos 5 a 10 años, las herramientas de desarrollo de Aprendizaje Profundo, las bibliotecas y los idiomas se convertirán en componentes estándar de cada conjunto de herramientas de desarrollo de software. Hasta ahora, Google, Sales Force, Facebook, Amazon han utilizado con éxito la IA de aprendizaje profundo para impulsar sus negocios. Las aplicaciones iban desde la traducción automática automática, análisis de imágenes, análisis de video, análisis de movimiento, generación de publicidad dirigida y mucho más.

Este curso está dirigido a aquellas organizaciones que desean incorporar Aprendizaje Profundo como parte muy importante de su estrategia de producto o servicio. A continuación se muestra el esquema del curso de aprendizaje profundo que podemos personalizar para diferentes niveles de empleados / partes interesadas en una organización.

Público objetivo:

(Dependiendo del público objetivo, los materiales del curso serán personalizados)

Ejecutivos

Una descripción general de AI y cómo encaja en la estrategia corporativa, con sesiones de trabajo sobre planificación estratégica, hojas de ruta tecnológicas y asignación de recursos para garantizar el máximo valor.

Gerentes de proyecto

Cómo planificar un proyecto de AI, incluida la recopilación y evaluación de datos, la limpieza y verificación de datos, el desarrollo de un modelo de prueba de concepto, la integración en los procesos comerciales y la entrega en toda la organización.

Desarrolladores

Entrenamientos técnicos detallados, con enfoque en redes neuronales y aprendizaje profundo, análisis de imágenes y video (CNN), análisis de sonido y texto (NLP) y llevar la inteligencia artificial a las aplicaciones existentes.

Vendedores

Una visión general de AI y cómo puede satisfacer las necesidades de los clientes, propuestas de valor para varios productos y servicios, y cómo disipar los temores y promover los beneficios de la IA.
14 horas
Descripción General
Esta sesión de capacitación basada en el aula contendrá presentaciones y ejemplos basados en computadora y ejercicios de estudio de caso para emprender con bibliotecas de redes neurales y profundas relevantes
14 horas
Descripción General
Machine Learning es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin estar programadas explícitamente. Deep Learning es un subcampo de Machine Learning que intenta imitar el funcionamiento del cerebro humano al tomar decisiones. Está entrenado con datos para brindar soluciones automáticas a los problemas. Deep Learning ofrece amplias oportunidades para la industria médica, que está instalada en una mina de oro de datos.

En esta capacitación en vivo dirigida por un instructor, los participantes tomarán parte en una serie de discusiones, ejercicios y análisis de estudios de casos para comprender los fundamentos del aprendizaje profundo. Se evaluarán las herramientas y técnicas de aprendizaje profundo más importantes y se llevarán a cabo ejercicios para preparar a los participantes para llevar a cabo su propia evaluación e implementación de soluciones de aprendizaje profundo dentro de sus organizaciones.

Al final de esta capacitación, los participantes podrán:

- Comprender los fundamentos del Aprendizaje Profundo
- Aprende técnicas de aprendizaje profundo y sus aplicaciones en la industria
- Examine problemas en medicina que pueden ser resueltos por las tecnologías Deep Learning
- Explore casos de estudio de Deep Learning en medicina
- Formule una estrategia para adoptar las últimas tecnologías en Deep Learning para resolver problemas en medicina

Audiencia

- Gerentes
- Profesionales médicos en roles de liderazgo

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica

Nota

- Para solicitar una capacitación personalizada para este curso, contáctenos para hacer arreglos.
28 horas
Descripción General
El aprendizaje automático es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin ser programadas explícitamente.

El aprendizaje profundo es un subcampo de aprendizaje automático que utiliza métodos basados en el aprendizaje de representaciones y estructuras de datos como las redes neuronales.

Python es un lenguaje de programación de alto nivel famoso por su sintaxis clara y legibilidad de código.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo implementar modelos de aprendizaje profundo para telecomunicaciones utilizando Python a medida que pasan por la creación de un modelo de riesgo de crédito de aprendizaje profundo.

Al final de esta formación, los participantes podrán:

- Comprender los conceptos fundamentales del aprendizaje profundo.
- Aprenda las aplicaciones y usos del aprendizaje profundo en telecomunicaciones.
- Utilice Python, Keras y TensorFlow para crear modelos de aprendizaje profundo para telecomunicaciones.
- Cree su propio modelo de predicción de abandono sesión de clientes de aprendizaje profundo con Python.

Formato del curso

- Conferencia interactiva y discusión.
- Muchos ejercicios y práctica.
- Implementación práctica en un entorno de laboratorio en vivo.

Opciones de personalización del curso

- Para solicitar una formación personalizada para este curso, póngase en contacto con nosotros para organizar.
28 horas
Descripción General
This is a 4 day course introducing AI and it's application. There is an option to have an additional day to undertake an AI project on completion of this course.
21 horas
Descripción General
TensorFlow es una biblioteca popular y de aprendizaje automático desarrollada por Go ogle para aprendizaje profundo, computación numérica y aprendizaje automático a gran escala. TensorFlow 2.0, lanzado en enero de 2019, es la versión más nueva de TensorFlow e incluye mejoras en la ejecución entusiasta, la compatibilidad y la coherencia de la API.

Esta capacitación en vivo dirigida por un instructor (en el sitio o remota) está dirigida a desarrolladores y científicos de datos que desean usar Tensorflow 2.0 para construir predictores, clasificadores, modelos generativos, redes neuronales, etc.

Al final de esta capacitación, los participantes podrán:

- Instale y configure TensorFlow 2.0.
- Comprenda los beneficios de TensorFlow 2.0 sobre las versiones anteriores.
- Construir modelos de aprendizaje profundo.
- Implemente un clasificador de imagen avanzado.
- Implemente un modelo de aprendizaje profundo en la nube, dispositivos móviles e IoT.

Formato del curso

- Conferencia interactiva y discusión.
- Muchos ejercicios y práctica.
- Implementación práctica en un entorno de laboratorio en vivo.

Opciones de personalización del curso

- Para solicitar una capacitación personalizada para este curso, contáctenos para organizarlo.
- Para obtener más información sobre TensorFlow , visite: https://www.tensorflow.org/
21 horas
Descripción General
This instructor-led, live training in Ecuador (online or onsite) is aimed at developers who wish to build a self-driving car using deep learning techniques.

By the end of this training, participants will be able to:

- Use Keras to build and train a convolutional neural network.
- Use computer vision techniques to identify lanes in an autonomos driving project.
- Train a deep learning model to differentiate traffic signs.
- Simulate a fully autonomous car.
14 horas
Descripción General
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar Matlab para diseñar, construir y visualizar una red neuronal convolucional para el reconocimiento de imágenes.

Al final de esta capacitación, los participantes podrán:

- Construya un modelo de aprendizaje profundo
- Automatizar el etiquetado de datos
- Trabaja con modelos de Caffe y TensorFlow-Keras
- Entrene datos usando múltiples GPU, la nube o clusters

Audiencia

- Desarrolladores
- Ingenieros
- Expertos de dominio

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
14 horas
Descripción General
Keras es una biblioteca de redes neuronales Python de código abierto para la creación de redes neuronales de aprendizaje profundo. Keras ofrece un conjunto intuitivo de abstracciones, simplificando el desarrollo de redes neuronales y modelos de aprendizaje profundo.

Esta formación en vivo dirigida por un instructor (in situ o remota) está dirigida a ingenieros de software que deseen desarrollar redes neuronales avanzadas de aprendizaje profundo y modelar utilizando Keras y Python.

Al final de esta formación, los participantes podrán:

- Aplique aprendizaje profundo con métodos de aprendizaje supervisados o no supervisados.
- Desarrollar, entrenar e implementar redes neuronales simultáneas y redes neuronales recurrentes.
- Utilice Keras y Python para crear modelos de aprendizaje profundo para resolver problemas relacionados con imágenes, texto, sonido y mucho más.

Formato del curso

- Conferencia interactiva y discusión.
- Muchos ejercicios y práctica.
- Implementación práctica en un entorno de laboratorio en vivo.

Opciones de personalización del curso

- Para solicitar una formación personalizada para este curso, póngase en contacto con nosotros para organizar.
14 horas
Descripción General
This instructor-led, live training in Ecuador (online or onsite) is aimed at software engineers who wish to program in Python with OpenCV 4 for deep learning.

By the end of this training, participants will be able to:

- View, load, and classify images and videos using OpenCV 4.
- Implement deep learning in OpenCV 4 with TensorFlow and Keras.
- Run deep learning models and generate impactful reports from images and videos.
14 horas
Descripción General
This instructor-led, live training in Ecuador (online or onsite) is aimed at data scientists who wish to use TensorFlow.js to identify patterns and generate predictions through machine learning models.

By the end of this training, participants will be able to:

- Build and train machine learning models with TensorFlow.js.
- Run existing machine learning models in the browser or under Node.js.
- Retrain pre-existing machine learning using custom data.
14 horas
Descripción General
This instructor-led, live training in Ecuador (online or onsite) is aimed at data scientists who wish to use TensorFlow to analyze potential fraud data.

By the end of this training, participants will be able to:

- Create a fraud detection model in Python and TensorFlow.
- Build linear regressions and linear regression models to predict fraud.
- Develop an end-to-end AI application for analyzing fraud data.
21 horas
Descripción General
This instructor-led, live training in Ecuador (online or onsite) is aimed at data scientists who wish to go from training a single ML model to deploying many ML models to production.

By the end of this training, participants will be able to:

- Install and configure TFX and supporting third-party tools.
- Use TFX to create and manage a complete ML production pipeline.
- Work with TFX components to carry out modeling, training, serving inference, and managing deployments.
- Deploy machine learning features to web applications, mobile applications, IoT devices and more.
21 horas
Descripción General
This instructor-led, live training in (online or onsite) is aimed at data scientists who wish to use Apache MXNet's to build and deploy a deep learning model for image recognition.

By the end of this training, participants will be able to:

- Install and configure Apache MXNet and its components.
- Understand MXNet's architecture and data structures.
- Use Apache MXNet's low-level and high-level APIs to efficiently build neural networks.
- Build a convolutional neural network for image classification.
35 horas
Descripción General
This instructor-led, live training in Ecuador (online or onsite) is aimed at data scientists who wish to accelerate real-time machine learning applications and deploy them at scale.

By the end of this training, participants will be able to:

- Install the OpenVINO toolkit.
- Accelerate a computer vision application using an FPGA.
- Execute different CNN layers on the FPGA.
- Scale the application across multiple nodes in a Kubernetes cluster.
21 horas
Descripción General
This instructor-led, live training in Ecuador (online or onsite) is aimed at developers who wish to use TensorFlow Lite to deploy deep learning models on embedded devices.

By the end of this training, participants will be able to:

- Install and configure Tensorflow Lite on an embedded device.
- Understand the concepts and components underlying TensorFlow Lite.
- Convert existing models to TensorFlow Lite format for execution on embedded devices.
- Work within the limitations of small devices and TensorFlow Lite, while learning how to expand the scope of operations that can be run.
- Deploy a deep learning model on an embedded device running Linux.
21 horas
Descripción General
This instructor-led, live training in Ecuador (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop mobile applications with deep learning capabilities.

By the end of this training, participants will be able to:

- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow, machine learning and deep learning.
- Load TensorFlow Models onto an Android device.
- Enable deep learning and machine learning functionality such as computer vision and natural language recognition in a mobile application.
21 horas
Descripción General
This instructor-led, live training in Ecuador (online or onsite) is aimed at engineers who wish to write, load and run machine learning models on very small embedded devices.

By the end of this training, participants will be able to:

- Install TensorFlow Lite.
- Load machine learning models onto an embedded device to enable it to detect speech, classify images, etc.
- Add AI to hardware devices without relying on network connectivity.
21 horas
Descripción General
This instructor-led, live training in (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop iOS mobile applications with deep learning capabilities.

By the end of this training, participants will be able to:

- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow and machine learning on mobile devices.
- Load TensorFlow Models onto an iOS device.
- Run an iOS application capable of detecting and classifying an object captured through the device's camera.
14 horas
Descripción General
This instructor-led, live training in Ecuador (online or onsite) is aimed at developers who wish to build hardware-accelerated object detection and tracking models to analyze streaming video data.

By the end of this training, participants will be able to:

- Install and configure the necessary development environment, software and libraries to begin developing.
- Build, train, and deploy deep learning models to analyze live video feeds.
- Identify, track, segment and predict different objects within video frames.
- Optimize object detection and tracking models.
- Deploy an intelligent video analytics (IVA) application.
35 horas
Descripción General
Este curso comienza con la entrega de conocimientos conceptuales en redes neuronales y, en general, en el algoritmo de aprendizaje automático, aprendizaje profundo (algoritmos y aplicaciones).

Parte-1 (40%) de esta capacitación se centra más en los fundamentos, pero te ayudará a elegir la tecnología adecuada: TensorFlow, Caffe, Theano, DeepDrive, Keras, etc.

La Parte 2 (20%) de esta capacitación presenta Theano, una biblioteca de Python que hace que escribir modelos de aprendizaje profundo sea fácil.

Parte-3 (40%) de la capacitación estaría ampliamente basada en Tensorflow - 2nd Generation API de la biblioteca de software de código abierto de Google para Deep Learning. Los ejemplos y handson se harían todos en TensorFlow.

Audiencia

Este curso está dirigido a ingenieros que buscan utilizar TensorFlow para sus proyectos de aprendizaje profundo.

Después de completar este curso, los delegados:

- tener una buena comprensión de las redes neuronales profundas (DNN), CNN y RNN
- comprender la estructura y los mecanismos de despliegue de TensorFlow
- ser capaz de llevar a cabo las tareas y configuraciones de entorno / producción / arquitectura
- ser capaz de evaluar la calidad del código, realizar la depuración, el monitoreo
- ser capaz de implementar producción avanzada como modelos de entrenamiento, construcción de gráficos y registro

No todos los temas se cubrirán en un salón de clases público con 35 horas de duración debido a la inmensidad del tema.

La duración del curso completo será de alrededor de 70 horas y no de 35 horas.
7 horas
Descripción General
TensorFlow Serving es un sistema para servir modelos de aprendizaje automático (ML) a la producción.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a configurar y usar TensorFlow Serving para implementar y administrar modelos ML en un entorno de producción.

Al final de esta capacitación, los participantes podrán:

- Entrene, exporte y sirva varios modelos de TensorFlow
- Pruebe e implemente algoritmos utilizando una única arquitectura y un conjunto de API
- Extienda TensorFlow Sirviendo para servir a otros tipos de modelos más allá de los modelos TensorFlow

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica

Próximos Cursos Aprendizaje profundo

Cursos de Fin de Semana de DL (Deep Learning), Capacitación por la Tarde de Aprendizaje profundo, Aprendizaje profundo boot camp, Clases de DL (Deep Learning), Capacitación de Fin de Semana de Deep Learning (DL), Cursos por la Tarde de Deep Learning (DL), Deep Learning (DL) coaching, Instructor de Aprendizaje profundo, Capacitador de Deep Learning (DL), Aprendizaje profundo con instructor, Cursos de Formación de DL (Deep Learning), DL (Deep Learning) en sitio, Cursos Privados de Aprendizaje profundo, Clases Particulares de DL (Deep Learning), Capacitación empresarial de Aprendizaje profundo, Talleres para empresas de Deep Learning (DL), Cursos en linea de DL (Deep Learning), Programas de capacitación de DL (Deep Learning), Clases de DL (Deep Learning)

Promociones

Descuentos en los Cursos

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

is growing fast!

We are looking to expand our presence in Ecuador!

As a Business Development Manager you will:

  • expand business in Ecuador
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!

Este sitio en otros países / regiones