
Los cursos de formación en vivo (DL) de aprendizaje profundo dirigidos por un instructor demuestran a través de la práctica los fundamentos y aplicaciones del aprendizaje profundo y cubren temas como el aprendizaje profundo de máquinas, el aprendizaje estructurado profundo y el aprendizaje jerárquico.
El entrenamiento de aprendizaje profundo está disponible como "entrenamiento en vivo en el sitio" o "entrenamiento en vivo remoto". El entrenamiento en vivo se puede realizar localmente en las instalaciones del cliente en Ecuador o en los centros de entrenamiento corporativos de NobleProg en Ecuador. El entrenamiento remoto en vivo se lleva a cabo por medio de un escritorio remoto interactivo.
NobleProg--su proveedor de capacitación local
Machine Translated
Testimonios
Fue muy interactivo y más relajado e informal de lo esperado. Cubrimos muchos temas en el tiempo y el capacitador siempre estuvo receptivo a hablar más en detalle o, más en general, sobre los temas y cómo se relacionaban. Siento que la capacitación me ha dado las herramientas para seguir aprendiendo en lugar de que sea una sola sesión donde el aprendizaje se detiene una vez que has terminado, lo cual es muy importante dada la escala y la complejidad del tema.
Jonathan Blease
Curso: Artificial Neural Networks, Machine Learning, Deep Thinking
Machine Translated
El tema es muy interesante.
Wojciech Baranowski
Curso: Introduction to Deep Learning
Machine Translated
Los formadores teóricos del conocimiento y la voluntad de resolver los problemas con los participantes después de la capacitación.
Grzegorz Mianowski
Curso: Introduction to Deep Learning
Machine Translated
Tema. ¡Muy interesante!.
Piotr
Curso: Introduction to Deep Learning
Machine Translated
Los ejercicios después de cada tema fueron realmente útiles, a pesar de que al final eran demasiado complicados. ¡En general, el material presentado fue muy interesante y envolvente! Los ejercicios con reconocimiento de imágenes fueron geniales.
Dolby Poland Sp. z o.o.
Curso: Introduction to Deep Learning
Machine Translated
Creo que si el entrenamiento se hiciera en polaco, le permitiría al formador compartir su conocimiento de manera más eficiente.
Radek
Curso: Introduction to Deep Learning
Machine Translated
La visión global del aprendizaje profundo.
Bruno Charbonnier
Curso: Advanced Deep Learning
Machine Translated
Los ejercicios son suficientemente prácticos y no necesitan un alto conocimiento en Python para hacerse.
Alexandre GIRARD
Curso: Advanced Deep Learning
Machine Translated
Haciendo ejercicios sobre ejemplos reales usando Eras. Italia entendió totalmente nuestras expectativas sobre esta capacitación.
Paul Kassis
Curso: Advanced Deep Learning
Machine Translated
Realmente aprecié las respuestas claras y claras de Chris a nuestras preguntas.
Léo Dubus
Curso: Réseau de Neurones, les Fondamentaux en utilisant TensorFlow comme Exemple
Machine Translated
En general, disfruté el entrenador experto.
Sridhar Voorakkara
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Me sorprendió el estándar de esta clase, diría que era el estándar de la universidad.
David Relihan
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Muy buena visión general. Go fondo desde Tensorflow por qué funciona como lo hace.
Kieran Conboy
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Me gustaron las oportunidades de hacer preguntas y obtener explicaciones más profundas de la teoría.
Sharon Ruane
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Hemos obtenido mucha más información sobre el tema. Se hicieron algunas buenas discusiones con algunos temas reales dentro de nuestra compañía.
Sebastiaan Holman
Curso: Machine Learning and Deep Learning
Machine Translated
La capacitación proporcionó la base correcta que nos permite ampliar aún más, al mostrar cómo la teoría y la práctica van de la mano. De hecho, me interesó más en el tema que antes.
Jean-Paul van Tillo
Curso: Machine Learning and Deep Learning
Machine Translated
Realmente disfruté de la cobertura y la profundidad de los temas.
Anirban Basu
Curso: Machine Learning and Deep Learning
Machine Translated
El profundo conocimiento del entrenador sobre el tema.
Sebastian Görg
Curso: Introduction to Deep Learning
Machine Translated
Enfoque muy actualizado o CPI (tensor flow, era, learn) para hacer aprendizaje automático.
Paul Lee
Curso: TensorFlow for Image Recognition
Machine Translated
Muy flexible.
Frank Ueltzhöffer
Curso: Artificial Neural Networks, Machine Learning and Deep Thinking
Machine Translated
En general, disfruté de la flexibilidad.
Werner Philipp
Curso: Artificial Neural Networks, Machine Learning and Deep Thinking
Machine Translated
Dada la perspectiva de la tecnología: qué tecnología / proceso podría ser más importante en el futuro; mira, para qué se puede usar la tecnología.
Commerzbank AG
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Me beneficié de la selección del tema. Estilo de entrenamiento Practica la orientación.
Commerzbank AG
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
forma de conducir y ejemplo dado por el entrenador
ORANGE POLSKA S.A.
Curso: Machine Learning and Deep Learning
Machine Translated
Posibilidad de discutir los temas propuestos usted mismo
ORANGE POLSKA S.A.
Curso: Machine Learning and Deep Learning
Machine Translated
Comunicación con los conferenciantes
文欣 张
Curso: Artificial Neural Networks, Machine Learning, Deep Thinking
Machine Translated
Me gusta
lisa xie
Curso: Artificial Neural Networks, Machine Learning, Deep Thinking
Machine Translated
Cobertura en profundidad de temas de aprendizaje automático, particularmente redes neuronales. Desmitificaron mucho el tema.
Sacha Nandlall
Curso: Python for Advanced Machine Learning
Machine Translated
Amplio y actualizado conocimiento de ejemplos de aplicaciones líderes y prácticas.
ING Bank Śląski S.A.
Curso: Introduction to Deep Learning
Machine Translated
Muchos ejercicios, muy buena cooperación con el grupo.
Janusz Chrobot - ING Bank Śląski S.A.
Curso: Introduction to Deep Learning
Machine Translated
trabajar en colaboradores,
ING Bank Śląski S.A.
Curso: Introduction to Deep Learning
Machine Translated
Era obvio que los entusiastas de los temas presentados eran líderes. Usé ejemplos interesantes durante el ejercicio.
ING Bank Śląski S.A.
Curso: Introduction to Deep Learning
Machine Translated
Una amplia gama de temas cubiertos y un conocimiento sustancial de los líderes.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
falta
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Grandes conocimientos teóricos y prácticos de los profesores. La comunicatividad de los formadores. Durante el curso, podrías hacer preguntas y obtener respuestas satisfactorias.
Kamil Kurek - ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Parte práctica, donde implementamos algoritmos. Esto permitió una mejor comprensión del tema.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Ejercicios y ejemplos implementados en ellos.
Paweł Orzechowski - ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Ejemplos y temas discutidos.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Conocimiento sustantivo, compromiso, una forma apasionada de transferir conocimiento. Ejemplos prácticos después de una conferencia teórica.
Janusz Chrobot - ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Ejercicios prácticos preparados por el Sr. Maciej.
ING Bank Śląski S.A.; Kamil Kurek Programowanie
Curso: Understanding Deep Neural Networks
Machine Translated
Me beneficié de la pasión por enseñar y centrarme en hacer que las cosas sean sensatas.
Zaher Sharifi - GOSI
Curso: Advanced Deep Learning
Machine Translated
Detección de punto malo de identificación humana y placa de circuito
王 春柱 - 中移物联网
Curso: Deep Learning for NLP (Natural Language Processing)
Machine Translated
Demostrar
中移物联网
Curso: Deep Learning for NLP (Natural Language Processing)
Machine Translated
Sobre el área de la cara.
中移物联网
Curso: Deep Learning for NLP (Natural Language Processing)
Machine Translated
Los intercambios informales que tuvimos durante las conferencias realmente me ayudaron a profundizar mi comprensión del tema
Explore
Curso: Deep Reinforcement Learning with Python
Machine Translated
Muchos consejos prácticos.
Pawel Dawidowski - ABB Sp. z o.o.
Curso: Deep Learning with TensorFlow
Machine Translated
Mucha información relacionada con la implementación de soluciones.
Michał Smolana - ABB Sp. z o.o.
Curso: Deep Learning with TensorFlow
Machine Translated
Una multitud de consejos prácticos y conocimientos del profesor de una amplia gama de temas de AI / IT / SQL / IoT.
ABB Sp. z o.o.
Curso: Deep Learning with TensorFlow
Machine Translated
mucha información, todas las preguntas contestadas, ejemplos interesantes
A1 Telekom Austria AG
Curso: Deep Learning for Telecom (with Python)
Machine Translated
Comencé con un conocimiento cercano a cero, y al final pude construir y entrenar mis propias redes.
Huawei Technologies Duesseldorf GmbH
Curso: TensorFlow for Image Recognition
Machine Translated
Algunos de nuestros clientes




























_ireland.gif)






.png)














DL (Deep Learning) Subcategorías
Programas de los cursos DL (Deep Learning)
This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use TensorFlow.js to identify patterns and generate predictions through machine learning models.
By the end of this training, participants will be able to:
- Build and train machine learning models with TensorFlow.js.
- Run machine learning models in the browser or under Node.js.
- Retrain pre-existing machine learning models using custom data.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
This instructor-led, live training (online or onsite) is aimed at software engineers who wish to program in Python with OpenCV 4 for deep learning.
By the end of this training, participants will be able to:
- View, load, and classify images and videos using OpenCV 4.
- Implement deep learning in OpenCV 4 with TensorFlow and Keras.
- Run deep learning models and generate impactful reports from images and videos.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar los componentes de OpenFace para crear y desplegar una aplicación de reconocimiento facial de muestra.
Al final de esta capacitación, los participantes podrán:
Trabaje con los componentes de OpenFace, incluidos dlib, OpenVC, Torch y nn4 para implementar la detección de rostros, la alineación y la transformación.
Aplique OpenFace a aplicaciones del mundo real tales como vigilancia, verificación de identidad, realidad virtual, juegos e identificación de clientes habituales, etc.
Audiencia
- Desarrolladores
- Científicos de datos
Formato del curso
- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
En esta capacitación, los participantes aprenderán cómo configurar y utilizar OpenNMT para llevar a cabo la traducción de varios conjuntos de datos de muestra. El curso comienza con una visión general de las redes neuronales que se aplican a la traducción automática. Los participantes realizarán ejercicios en vivo para demostrar su comprensión de los conceptos aprendidos y obtener retroalimentación del instructor. Al final de este entrenamiento, los participantes tendrán los conocimientos y la práctica necesarios para implementar una solución OpenNMT en vivo.
Las muestras de idioma fuente y de destino pueden pre-arreglarse según los requisitos del cliente.
Audiencia
Ingenieros de traducción y localización
Formato del curso
Parte conferencia, discusión de parte, práctica práctica pesada
En este curso repasaremos los principios de las redes neuronales y utilizaremos OpenNN para implementar una aplicación de muestra.
Audiencia
Desarrolladores de software y programadores que deseen crear aplicaciones de Deep Learning.
Formato del curso
Conferencia y discusión junto con ejercicios prácticos.
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar PaddlePaddle para permitir el aprendizaje profundo en sus aplicaciones de productos y servicios.
Al final de esta capacitación, los participantes podrán:
- Configurar y configurar PaddlePaddle
- Configure una red neuronal convolucional (CNN) para el reconocimiento de imágenes y la detección de objetos
- Configurar una Red Neuronal Recurrente (RNN) para el análisis de sentimientos
- Establecer un aprendizaje profundo sobre los sistemas de recomendación para ayudar a los usuarios a encontrar respuestas
- Predecir porcentajes de clics (CTR), clasificar conjuntos de imágenes a gran escala, realizar reconocimiento óptico de caracteres (OCR), buscar rangos, detectar virus informáticos e implementar un sistema de recomendaciones.
Audiencia
- Desarrolladores
- Científicos de datos
Formato del curso
- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
Al final de esta capacitación, los participantes podrán:
- Implementar algoritmos y técnicas de aprendizaje automático para resolver problemas complejos
- Aplicar el aprendizaje profundo y el aprendizaje semi-supervisado a aplicaciones que involucren imagen, música, texto e información financiera
- Empujar los algoritmos de Python a su máximo potencial
- Usa bibliotecas y paquetes como NumPy y Theano
Audiencia
- Desarrolladores
- Analistas
- Científicos de datos
Formato del curso
- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
Al final de esta capacitación, los participantes podrán:
- Utiliza técnicas como el ajuste de hiperparámetros y el aprendizaje profundo
- Comprender e implementar técnicas de aprendizaje no supervisadas
- Ponga un modelo en producción para usar en una aplicación más grande
Audiencia
- Desarrolladores
- Analistas
- Científicos de datos
Formato del curso
- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
Keras is a high-level neural networks API for fast development and experimentation. It runs on top of TensorFlow, CNTK, or Theano.
This instructor-led, live training (online or onsite) is aimed at developers who wish to build a self-driving car (autonomous vehicle) using deep learning techniques.
By the end of this training, participants will be able to:
- Use computer vision techniques to identify lanes.
- Use Keras to build and train convolutional neural networks.
- Train a deep learning model to differentiate traffic signs.
- Simulate a fully autonomous car.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Audiencia
Este curso está dirigido a investigadores, ingenieros y desarrolladores que buscan utilizar Apache SINGA como un marco de aprendizaje profundo.
Después de completar este curso, los delegados:
- entender la estructura y los mecanismos de implementación de SINGA
- ser capaz de llevar a cabo las tareas de instalación / producción de entorno / arquitectura y configuración
- ser capaz de evaluar la calidad del código, realizar depuración,
- ser capaz de implementar la producción avanzada como modelos de entrenamiento, términos de inclusión, gráficos de construcción y registro
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo preparar un modelo de aprendizaje profundo para resolver tareas múltiples.
Al final de esta capacitación, los participantes podrán:
- Instalar tensor2tensor, seleccionar un conjunto de datos y entrenar y evaluar un modelo de IA
- Personalice un entorno de desarrollo utilizando las herramientas y los componentes incluidos en Tensor2Tensor
- Cree y use un único modelo para aprender de forma simultánea varias tareas de varios dominios
- Utilice el modelo para aprender de tareas con una gran cantidad de datos de entrenamiento y aplicar ese conocimiento a tareas donde los datos son limitados
- Obtenga resultados de procesamiento satisfactorios con una sola GPU
Audiencia
- Desarrolladores
- Científicos de datos
Formato del curso
- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
Esta capacitación en vivo dirigida por un instructor (en el sitio o remota) está dirigida a desarrolladores y científicos de datos que desean usar Tensorflow 2.0 para construir predictores, clasificadores, modelos generativos, redes neuronales, etc.
Al final de esta capacitación, los participantes podrán:
- Instale y configure TensorFlow 2.0.
- Comprenda los beneficios de TensorFlow 2.0 sobre las versiones anteriores.
- Construir modelos de aprendizaje profundo.
- Implemente un clasificador de imagen avanzado.
- Implemente un modelo de aprendizaje profundo en la nube, dispositivos móviles e IoT.
Formato del curso
- Conferencia interactiva y discusión.
- Muchos ejercicios y práctica.
- Implementación práctica en un entorno de laboratorio en vivo.
Opciones de personalización del curso
- Para solicitar una capacitación personalizada para este curso, contáctenos para organizarlo.
- Para obtener más información sobre TensorFlow , visite: https://www.tensorflow.org/
This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to deploy deep learning models on embedded devices.
By the end of this training, participants will be able to:
- Install and configure Tensorflow Lite on an embedded device.
- Understand the concepts and components underlying TensorFlow Lite.
- Convert existing machine learning models to TensorFlow Lite format for execution on embedded devices.
- Work within the limitations of small devices and TensorFlow Lite, while learning how to expand their default capabilities.
- Deploy deep learning models on embedded devices running Linux to solve physical world problems such as recognizing images and voice, predicting patterns, and initiating movements and responses from robots and other embedded systems in the field.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use Apache MXNet to build and deploy a deep learning model for image recognition.
By the end of this training, participants will be able to:
- Install and configure Apache MXNet and its components.
- Understand MXNet's architecture and data structures.
- Use Apache MXNet's low-level and high-level APIs to efficiently build neural networks.
- Build a convolutional neural network for image classification.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop mobile applications with deep learning capabilities.
By the end of this training, participants will be able to:
- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow, machine learning and deep learning.
- Load TensorFlow Models onto an Android device.
- Enable deep learning and machine learning functionality such as computer vision and natural language recognition in a mobile application.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
- To learn more about TensorFlow, please visit: https://www.tensorflow.org/lite/
This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop iOS mobile applications with deep learning capabilities.
By the end of this training, participants will be able to:
- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow and machine learning on mobile devices.
- Load TensorFlow Models onto an iOS device.
- Run an iOS application capable of detecting and classifying an object captured through the device's camera.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
This instructor-led, live training (online or onsite) is aimed at engineers who wish to write, load and run machine learning models on very small embedded devices.
By the end of this training, participants will be able to:
- Install TensorFlow Lite.
- Load machine learning models onto an embedded device to enable it to detect speech, classify images, etc.
- Add AI to hardware devices without relying on network connectivity.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a configurar y usar TensorFlow Serving para implementar y administrar modelos ML en un entorno de producción.
Al final de esta capacitación, los participantes podrán:
- Entrene, exporte y sirva varios modelos de TensorFlow
- Pruebe e implemente algoritmos utilizando una única arquitectura y un conjunto de API
- Extienda TensorFlow Sirviendo para servir a otros tipos de modelos más allá de los modelos TensorFlow
Audiencia
- Desarrolladores
- Científicos de datos
Formato del curso
- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
Audiencia
Este curso está dirigido a ingenieros que buscan usar TensorFlow para sus proyectos de Aprendizaje Profundo
Después de completar este curso, los delegados:
- entender la estructura y los mecanismos de despliegue de TensorFlow
- ser capaz de llevar a cabo las tareas de instalación / producción de entorno / arquitectura y configuración
- ser capaz de evaluar la calidad del código, realizar depuración,
- ser capaz de implementar producción avanzada como los modelos de entrenamiento, la construcción de gráficos y registro
Audiencia
Este curso está dirigido a ingenieros que buscan utilizar TensorFlow para los propósitos de reconocimiento de imágenes
Después de completar este curso, los delegados podrán:
- entender la estructura y los mecanismos de despliegue de TensorFlow
- llevar a cabo las tareas de instalación / producción de entorno / arquitectura y configuración
- evaluar la calidad del código, realizar depuración, monitoreo
- implementar la producción avanzada como modelos de formación, creación de gráficos y registro
This instructor-led, live training (online or onsite) is aimed at data scientists who wish to go from training a single ML model to deploying many ML models to production.
By the end of this training, participants will be able to:
- Install and configure TFX and supporting third-party tools.
- Use TFX to create and manage a complete ML production pipeline.
- Work with TFX components to carry out modeling, training, serving inference, and managing deployments.
- Deploy machine learning features to web applications, mobile applications, IoT devices and more.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
En este curso, cubrimos los principios de Torch, sus características únicas y cómo se puede aplicar en aplicaciones del mundo real. Pasamos por numerosos ejercicios prácticos en todas partes, demostrando y practicando los conceptos aprendidos.
Al final del curso, los participantes comprenderán a fondo las características y capacidades subyacentes de Torch, así como su rol y contribución dentro del espacio de IA en comparación con otros marcos y bibliotecas. Los participantes también habrán recibido la práctica necesaria para implementar Torch en sus propios proyectos.
Audiencia
Desarrolladores de software y programadores que deseen habilitar Machine and Deep Learning dentro de sus aplicaciones
Formato del curso
Descripción general de Machine and Deep Learning
Ejercicios de integración y codificación en clase
Preguntas de prueba salpicadas en el camino para verificar la comprensión
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo aprovechar las innovaciones en los procesadores de TPU para maximizar el rendimiento de sus propias aplicaciones de inteligencia artificial.
Al final de la capacitación, los participantes podrán:
- Entrenar varios tipos de redes neuronales en grandes cantidades de datos
- Use TPU para acelerar el proceso de inferencia hasta en dos órdenes de magnitud
- Utilice TPU para procesar aplicaciones intensivas, como búsqueda de imágenes, visión en la nube y fotos
Audiencia
- Desarrolladores
- Investigadores
- Ingenieros
- Científicos de datos
Formato del curso
- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
SyntaxNet es una estructura de procesamiento de lenguaje natural de la red neuronal para TensorFlow.
Word2Vec se utiliza para el aprendizaje de representaciones vectoriales de palabras, llamadas "embeddings palabra". Word2vec es un modelo predictivo particularmente computacionalmente eficiente para aprender las incorporaciones de palabras a partir de texto en bruto. Viene en dos sabores, el modelo continuo de la bolsa-de-palabras (CBOW) y el modelo de Skip-Gram (capítulo 3.1 y 3.2 en Mikolov y otros).
Utilizado en tándem, SyntaxNet y Word2Vec permite a los usuarios generar modelos de incorporación aprendida de entrada de lenguaje natural.
Audiencia
Este curso está dirigido a desarrolladores e ingenieros que tienen la intención de trabajar con los modelos SyntaxNet y Word2Vec en sus gráficos TensorFlow.
Después de completar este curso, los delegados:
Entender la estructura y los mecanismos de despliegue de TensorFlow
- ser capaz de llevar a cabo las tareas de instalación / producción de entorno / arquitectura y configuración
- ser capaz de evaluar la calidad del código, realizar depuración,
- ser capaz de implementar la producción avanzada como modelos de entrenamiento, términos de inclusión, gráficos de construcción y registro
Parte-1 (40%) de esta capacitación se centra más en los fundamentos, pero te ayudará a elegir la tecnología adecuada: TensorFlow, Caffe, Theano, DeepDrive, Keras, etc.
La Parte 2 (20%) de esta capacitación presenta Theano, una biblioteca de Python que hace que escribir modelos de aprendizaje profundo sea fácil.
Parte-3 (40%) de la capacitación estaría ampliamente basada en Tensorflow - 2nd Generation API de la biblioteca de software de código abierto de Google para Deep Learning. Los ejemplos y handson se harían todos en TensorFlow.
Audiencia
Este curso está dirigido a ingenieros que buscan utilizar TensorFlow para sus proyectos de aprendizaje profundo.
Después de completar este curso, los delegados:
- tener una buena comprensión de las redes neuronales profundas (DNN), CNN y RNN
- comprender la estructura y los mecanismos de despliegue de TensorFlow
- ser capaz de llevar a cabo las tareas y configuraciones de entorno / producción / arquitectura
- ser capaz de evaluar la calidad del código, realizar la depuración, el monitoreo
- ser capaz de implementar producción avanzada como modelos de entrenamiento, construcción de gráficos y registro
No todos los temas se cubrirán en un salón de clases público con 35 horas de duración debido a la inmensidad del tema.
La duración del curso completo será de alrededor de 70 horas y no de 35 horas.
This instructor-led, live training (online or onsite) is aimed at developers who wish to build hardware-accelerated object detection and tracking models to analyze streaming video data.
By the end of this training, participants will be able to:
- Install and configure the necessary development environment, software and libraries to begin developing.
- Build, train, and deploy deep learning models to analyze live video feeds.
- Identify, track, segment and predict different objects within video frames.
- Optimize object detection and tracking models.
- Deploy an intelligent video analytics (IVA) application.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Este entrenamiento se enfoca más en los fundamentos, pero lo ayudará a elegir la tecnología adecuada: TensorFlow, Caffe, Teano, DeepDrive, Keras, etc. Los ejemplos están hechos en TensorFlow.